일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- coding
- 코딩
- machinevision
- 파이썬
- 딥러닝
- 대학원
- 문자열
- 프로그래밍
- 인공지능
- 석사
- C언어
- 특수대학원
- 산업대학원
- 직장인
- 오픽
- 4차산업
- 초보영어
- GUI
- ComputerVision
- 머신비전
- 동사
- 3d프린터
- 영어공부
- 머신러닝
- 3dprinter
- 영어
- 파이썬gui
- Vision
- Python
- opencv
- Today
- Total
미래기술연구소
Kalman Filter 본문
Kalman filtering
• Problem: assign observer poles in an optimal way, that is to minimize the state estimation error
• Information comes in two ways: from sensors measurements (a posteriori) and from the model of the system (a priori)
• We need to mix the two information sources optimally, given a probabilistic description of their reliability (sensor precision, model accuracy)
• The Kalman filter solves this problem, and is now the most used state observer in most engineering fields (and beyond)
What does a Kalman Filter do, anyway?
• Given the linear dynamical system:
The Kalman Filter is a recursion that provides the “best” estimate of the state vector x
Covariance?
What’s so great about that?
• noise smoothing (improve noisy measurements)
• state estimation (for state feedback)
• recursive (computes next estimate using only most recent measurement)
How does it work?
1. prediction based on last estimate:
• 2. calculate correction based on prediction and current measurement:
• 3. update prediction:
Kalman filter • Kalman filter assumes a linear transition and observation model
• zero mean Gaussian noise
• Mean of the posterior state is given by Atxt-1+Btut and the covariance Rt
• Measurement probability
'Industry 4.0 > Control Engineering' 카테고리의 다른 글
Linear systems (0) | 2020.06.22 |
---|---|
LQR 제어 란 ? (0) | 2020.06.01 |
Kalman filter란? (0) | 2020.06.01 |
제어공학 강의자료 (0) | 2020.05.10 |
PLC 란? PLC가 뭐야? (0) | 2020.05.07 |